478 research outputs found

    Dramatic impact of pumping mechanism on photon entanglement in microcavity

    Full text link
    A theory of entangled photons emission from quantum dot in microcavity under continuous and pulsed incoherent pumping is presented. It is shown that the time-resolved two-photon correlations drastically depend on the pumping mechanism: the continuous pumping quenches the polarization entanglement and strongly suppresses photon correlation times. Analytical theory of the effect is presented.Comment: 6 pages, 3 figure

    Study of Phase Reconstruction Techniques applied to Smith-Purcell Radiation Measurements

    Full text link
    Measurements of coherent radiation at accelerators typically give the absolute value of the beam profile Fourier transform but not its phase. Phase reconstruction techniques such as Hilbert transform or Kramers Kronig reconstruction are used to recover such phase. We report a study of the performances of these methods and how to optimize the reconstructed profiles.Comment: Presented at IPAC'14 - THPME08

    The electron's dance

    No full text
    A joint Fermilab/SLAC publicationParis' Trocadéro science exhibition allows science enthusiasts to see--and even control--a real electron accelerator

    Effect of Beam Dynamics Processes in the Low Energy Ring ThomX

    Full text link
    As part of the R\&D for the 50 MeV ThomX Compton source project, we have studied the effect of several beam dynamics processes on the evolution of the beam in the ring. The processes studied include among others Compton scattering, intrabeam scattering, coherent synchrotron radiation. We have performed extensive simulations of a full injection/extraction cycle (400000 turns). We show how each of these processes degrades the flux of photons produced and how a feedback system contributes to recovering most of the flux.Comment: Submitted to IPAC'14, WEPRO00

    Effect of Compton Scattering on the Electron Beam Dynamics at the ATF Damping Ring

    Full text link
    Compton scattering provides one of the most promising scheme to obtain polarized positrons for the next generation of e−e^- -- e+e^+ colliders. Moreover it is an attractive method to produce monochromatic high energy polarized gammas for nuclear applications and X-rays for compact light sources. In this framework a four-mirror Fabry-P\'erot cavity has been installed at the Accelerator Test Facility (ATF - KEK, Tsukuba, Japan) and is used to produce an intense flux of polarized gamma rays by Compton scattering \cite{ipac-mightylaser}. For electrons at the ATF energy (1.28 GeV) Compton scattering may result in a shorter lifetime due to the limited bucket acceptance. We have implemented the effect of Compton scattering on a 2D tracking code with a Monte-Carlo method. This code has been used to study the longitudinal dynamics of the electron beam at the ATF damping ring, in particular the evolution of the energy spread and the bunch length under Compton scattering. The results obtained are presented and discussed. Possible methods to observe the effect of Compton scattering on the ATF beam are proposed

    Optical fiber beam loss monitor for the PHIL and ThomX facilities

    No full text
    ISBN 978-3-95450-132-8International audienceFiber beam loss monitor (FBLM) is an attractive solution to measure beam losses intensity and position in real time. It is a very useful tool, especially, for the commissioning and the beam alignment. In this article we report on the development of the FBLM at PHIL (PHotoinIector at LAL, Orsay, France) as a prototype of the beam loss monitor for the ThomX machine, the compact Compton based X-ray source being in the construction phase in Orsay

    Anomalous Suppression of Valley Splittings in Lead Salt Nanocrystals without Inversion Center

    Full text link
    Atomistic sp3d5s* tight-binding theory of PbSe and PbS nanocrystals is developed. It is demonstrated, that the valley splittings of confined electrons and holes strongly and peculiarly depend on the geometry of a nanocrystal. When the nanocrystal lacks a microscopic center of inversion and has T_d symmetry, the splitting is strongly suppressed as compared to the more symmetric nanocrystals with O_h symmetry, having an inversion center.Comment: 5 pages, 4 figures, 1 tabl

    Simulations and Studies of Electron Beam Dynamics under Compton Back-scattering for the Compact X-ray Source ThomX

    No full text
    MOPWO004 - ISBN 978-3-95450-122-9International audienceIn this article are presented beam dynamics investiga- tions of a relativistic electron bunch in the compact storage ring ThomX (50 MeV), which is under construction at LAL to produce hard X-ray using Compton Back-Scattering (CBS). The effect of CBS has been implemented in a 6D tracking code. In addition to CBS, the influence of lattice non linearities and various collective effects on the flux of scattered Compton photons is investigated

    Quasiparticle energies for large molecules: a tight-binding GW approach

    Full text link
    We present a tight-binding based GW approach for the calculation of quasiparticle energy levels in confined systems such as molecules. Key quantities in the GW formalism like the microscopic dielectric function or the screened Coulomb interaction are expressed in a minimal basis of spherically averaged atomic orbitals. All necessary integrals are either precalculated or approximated without resorting to empirical data. The method is validated against first principles results for benzene and anthracene, where good agreement is found for levels close to the frontier orbitals. Further, the size dependence of the quasiparticle gap is studied for conformers of the polyacenes (C4n+2H2n+4C_{4n+2}H_{2n+4}) up to n = 30.Comment: 10 pages, 5 eps figures submitted to Phys. Rev.

    Effect of Compton Scattering on the Electron Beam Dynamics at the ATF Damping Ring

    Get PDF
    Compton scattering provides one of the most promising scheme to obtain polarized positrons for the next generation of e−e^- -- e+e^+ colliders. Moreover it is an attractive method to produce monochromatic high energy polarized gammas for nuclear applications and X-rays for compact light sources. In this framework a four-mirror Fabry-P\'erot cavity has been installed at the Accelerator Test Facility (ATF - KEK, Tsukuba, Japan) and is used to produce an intense flux of polarized gamma rays by Compton scattering \cite{ipac-mightylaser}. For electrons at the ATF energy (1.28 GeV) Compton scattering may result in a shorter lifetime due to the limited bucket acceptance. We have implemented the effect of Compton scattering on a 2D tracking code with a Monte-Carlo method. This code has been used to study the longitudinal dynamics of the electron beam at the ATF damping ring, in particular the evolution of the energy spread and the bunch length under Compton scattering. The results obtained are presented and discussed. Possible methods to observe the effect of Compton scattering on the ATF beam are proposed
    • 

    corecore